a2 United States Patent

Fuller et al.

US009405582B2

US 9,405,582 B2
Aug. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DYNAMIC PARALLEL DISTRIBUTED JOB
CONFIGURATION IN A SHARED-RESOURCE

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

ENVIRONMENT

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Nicholas C. M. Fuller, North Hills, NY
(US); Vijay K. Naik, Pleasantville, NY
(US); Liangzhao Zeng, Yorktown
Heights, NY (US); Li Zhang, Yorktown

Heights, NY (US)

Assignee:

International Business Machines

Corporation, Armonk, NY (US)

Notice:

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 112 days.

Appl. No.: 14/309,938

Filed: Jun. 20, 2014

Prior Publication Data
US 2015/0370603 Al Dec. 24, 2015
Int. CI.
GOG6F 9/46 (2006.01)
GOG6F 9/50 (2006.01)
GOGF 9/48 (2006.01)
GOGF 9/445 (2006.01)
GOG6F 9/455 (2006.01)
U.S. CL
CPC

GO6F 9/5011 (2013.01); GOGF 9/44505

(2013.01); GO6F 9/4881 (2013.01); GOGF

Field of Classification Search

None

9/45533 (2013.01)

See application file for complete search history.

job performance

MapReduce job configuration manager
checks whether new cluster status impacts

MapReduce job configuration manager
creates new task configurations for
MapReduce task configurators

(56) References Cited
U.S. PATENT DOCUMENTS

5,273,019 A
8,365,181 B2 *

12/1993 Matthews et al.

1/2013 Flowero........ GO6F 9/5033
709/201

8,447,852 Bl

8,555,077 B2

8,706,798 B1*

5/2013 Penumaka et al.
10/2013 Davis et al.
4/2014 Suchter GO6F 9/5038
709/202

(Continued)

FOREIGN PATENT DOCUMENTS

WO 2012158649 A2 11/2012
OTHER PUBLICATIONS

Brunt et al., “A Conceptual Framework for Adaptation”, This work is
supported by the Furopean Integrated Project 257414 ASCENS, pp.
1-33, DOI 10.1145/0000000.0000000, website: <http://doi.acm.org/
10.1145/0000000.0000000>.

(Continued)

Primary Examiner — Gregory A Kessler
(74) Attorney, Agent, or Firm — Stephen Darrow; David B.
Woycechowsky

(57) ABSTRACT

Dynamically adjusting the parameters of a parallel, distrib-
uted job in response to changes to the status of the job cluster.
Includes beginning execution of a job in a cluster, receiving
cluster status information, determining a job performance
impact of the cluster status, reconfiguring job parameters
based on the performance impact, and continuing execution
of the job using the updated configuration. Dynamically
requesting a change to the resources of the job cluster for a
parallel, distributed job in response to changes in job status.
Includes beginning execution of a job in a cluster, receiving
job status information, determining a job performance
impact, requesting a changed allocation of cluster resources
based on the determined job performance impact, reconfig-
uring one or more job parameters based on the changed allo-
cation, and continuing execution of the job using the updated
configuration.

18 Claims, 8 Drawing Sheets

s825
MapReduoe task monitars report task statuses |§

to MapReduce job configurai

on manager

830

MapReduce job configuration manager checks ‘S

effectiveness of new task col

nfigurations

US 9,405,582 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0031316 Al* 1/2009 Richoux GOG6F 9/5066
718/102
2013/0254196 Al* 9/2013 Babu GO6F 17/30595
707/736

OTHER PUBLICATIONS

Bu, “Autonomic Management and Performance Optimization for
Cloud Computing Services”, Dissertation Submitted to the Graduate
School of Wayne State University, Detroit, Michigan, © Copyright
by Xiangping Bu, 2013, pp. i-153.

Gunarathne et al, “MapReduce in the Clouds for Science”, 2010
IEEE Second International Conference on Cloud Computing Tech-
nology and Science (CloudCom), Nov. 30, 2010-Dec. 3, 2010, pp.
565-572, E-ISBN: 978-0-7695-4302-4, DOI: 10.1109/CloudCom.
2010.107.

Koehler et al., “An adaptive framework for the execution of data-
intensive MapReduce applications in the Cloud”, 2011 IEEE Inter-
national Parallel & Distributed Processing Symposium, IEEE Com-

puter Society, Copyright 2011 IEEE DOI 10.1109/IPDPS.2011.254,
pp. 1122-1131.

Li et al., “MRONLINE: MapReduce Online Performance Tuning”,
HPDC’14, Jun. 23-27, Vancouver, BC, Canada, Copyright 2014
ACM 978-1-4503-2749-7/14/06, <http://dx.doi.org/10.1145/
2600212.2600229>.

Park et al., “Locality-Aware Dynamic VM Reconfiguration on
MapReduce Clouds”, HPDC’12, Jun. 18-22, 2012, Delft, The Neth-
erlands, Copyright 2012 ACM 978-1-4503-0805-2/12/06, pp. 27-36.
Phan etal., “Real-time MapReduce Scheduling”, University of Penn-
sylvania, 2010, pp. 1-6.

U.S. Appl. No. 14/176,635, entitled “Dynamic Resource Allocation
in Mapreduce”, filed Feb. 10, 2014.

U.S. Appl. No. 14/176,679, entitled “Enabling Dynamic Job Con-
figuration in Mapreduce”, filed Feb. 10, 2014.

U.S. Appl. No. 14/262,056, entitled “Dynamic Tuning of Memory in
Mapreduce Systems”, filed Apr. 25, 2014.

Vecchiola et al, “Aneka: A Software Platform for Net-based Cloud
Computing”, GRIDS-TR-2009-4, Grid Computing and Distributed
Systems Laboratory, The University of Melbourne, Australia, May
25, 2009, arXiv:0907.4622v1 [¢s.DC].

* cited by examiner

US 9,405,582 B2

Sheet 1 of 8

Aug. 2, 2016

U.S. Patent

L OId

[SHOIA3Q
TYNHILEX3
—

i

(S)30V4HILNI
o ”

am b * R

H31dVOVMHOMLIN

4INR
DNISS300Hd

91

oL

U.S. Patent Aug. 2, 2016 Sheet 2 of 8 US 9,405,582 B2

54N

FIG. 2

US 9,405,582 B2

Sheet 3 of 8

Aug. 2, 2016

U.S. Patent

€ Vld

09

SIEMCS DL Em»wﬂumx

QIEMYOT _—
SBARG SUBISAR sueiskg siensss

Sarenyog uoedddy ,.,f,EwOmvmwm £BBURGR 2IMOBHYDLY
aseqereq] somey SustomeN el T NS T wa osie suweguen

€

e

uohRIeniA

BRI suogeopddy SNIoMIEN affmigig SIBARG
{ENHEA R I BT A BRLIA [enitA

,.;,w_mmﬁ_mmam pug
SBuiued I8

waweleusy

Bisoisg puw
ABT @200 .

SULIoISIADIG
Suueapw ¢

[ANQISH

tpweleuey

AAME siofoai

uonesEg

‘Tussanoid ouefiasy

: e R v By

A AU DY WONISSEE F pue Duddeyy

SORAEUY BIRg mruy o Rewda@eq '
BIBMIOR

US 9,405,582 B2

Sheet 4 of 8

Aug. 2, 2016

U.S. Patent

av "'Old Yy 'OId
_ _
STONVHO NOILYHNDIINODIH SIONVHO
M 40 SS3ANTIAILOT443 WHIANOD NOILYHNDIANODIH 40
08YS T m mmmzngmwum WHI4NOD
NOILINI43d H31SNT0 MaN
NO d3Sveg SNOILYHNDIANOD Sc¥S I
MSVL 31vadn
m HILSNTO NO ISV SHSY.L
G/¥S t 3ONATHYW FHNDIANODTH
S3ISNLVLIS MSVYL NO a3svd w .
$304NOSIH HILSNTD 0zvS
3ONAIHIYN M3N 1S3INOIH 3IONVINHO4d3d
0IbS < 0 801 NO SNLYLS H3ILSNTO
S ONYINGOIHa m 40 LOVdANI INIWET13A
aor 30Na3ddvIN SIS ’
OL LOVdINI INIWET13A
< 0 H3LSNT0 I0NATHLYI 4O
S9¥S 1HOd3d SNLYLS JAIFD3Y
SHSVL IDNATHLYIN 40 m
S1HOJTIH SNLVLS IAITOIH 0LbS)
095 m 5 $371404d
J——— w MSVL m@:mwma«ﬁ alng
m YMSVYL 30NA3I4dYW aT1INg go0vs
EELES (Luvis)
1HV1S
0S¥ 00y

U.S. Patent Aug. 2, 2016 Sheet 5 of 8 US 9,405,582 B2

PROGRAM, 40
CLUSTER STATUS TASK TASK STATUS
MONITOR MOD PROFILER MONITOR MOD
42b MOD 42a 42e
CLUSTER STATUS TASK STATUS
IMPACT ANALYSIS IMPACT ANALYSIS
MOD 42¢ MOD 42f
TASK CLUSTER
CONFIGURATION RESOURCE
MOD 42d REQUEST MOD 429
FIG. 5
§ i cCLOUD | |
' | MONITORING | MRSERVICE | RESOURCE | |
| | AGENT 606 MANAGER 604 MANAGER | |
i T 602

§ MR JOB B |

g 610 B |

----------------- ‘33““““""""'5 MONITORING MR JOB E
.y i| AGENT 608 612

US 9,405,582 B2

Sheet 6 of 8

Aug. 2, 2016

U.S. Patent

PTZ ANIHOYIN TYOISAHd = kl\o%

02, _>_>/ 8LL _>_>/ LNIOV WINA m:hq_\% 9kL _>_>/) ¢+, INIHOVIN TVOISAHA

987 08z el 82z Zel 92z el

D1HIN NLH D1HN NLH 1HN NLHIN F__,,__w_,_m\u%
» N\ ® N Fal I
\ N AN 7 \
2 0z || = gz || = E7A
DIINOD DI4INOD ¥9Z SNLVLS DIANOD 297 SNLYLS SNLVLS
MSVL MSVL MSV L MSVL MSVL WA
4/ A \1
0FZ HIOVYNVIA |~ 96£183N03d
NOILYHNOIANOD] 30dNOs3d || !
aor 30Na3ddviN 1/ I_.||\\\\\|\\\\|\\\|\\\Il// 907 INIDNI
A

o U 7z noiwni=aa | ¢ NOISIAOHd 1«

807 H3DVYNVYI H3LSNTO | anoto

IDIAGIS IDNATHdVYIN JE——
2S/ SN1v1sS 707
d4318M1o || SSO ANOTO
05Z 9Or 20Z 431NAIHDS 007)
30NA3YdYIN M3IN [gor 30Na34dVIN L "Old

U.S. Patent Aug. 2, 2016

Sheet 7 of 8

statuses to

Virtual machine monitors report VM

cloud OSS

y

Cloud OSS reports cluster status to
MapReduce job configuration manager

A

y

MapReduce job configuration manager
checks whether new cluster status impacts

job performance

y

creates new task

MapReduce job configuration manager

configurations for

MapReduce task configurators

A

y

MapReduce task monitors report task statuses
to MapReduce job configuration manager

A

A

US 9,405,582 B2

S815

S820

S825

S830

MapReduce job configuration manager checks
effectiveness of new task configurations

FIG. 8

U.S. Patent Aug. 2, 2016

(Start)

»
L

MapReduce task monitors report
task statuses to MapReduce job
configuration manager

manager checks whether new
task statuses impact job
performance

Enough cluster
resources?

S913

Yes

Sheet 8 of 8 US 9,405,582 B2

[{e]
o
(@]

y S905
<

5891 0
MapReduce job configuration

S915
<

MapReduce job configuration
manager sends a resource
request to cloud OSS

y S920
Cloud OSS fulfills the 5

A

A

MapReduce job configuration manager
creates new task configurations for
MapReduce task configurators

!

MapReduce task monitors
reports task statuses to
MapReduce job configuration
manager

v

MapReduce job configuration
manager checks effectiveness
of new task configurations

resource request with
new cluster definition

5925
<

S930

S935

FIG.9

US 9,405,582 B2

1
DYNAMIC PARALLEL DISTRIBUTED JOB
CONFIGURATION IN A SHARED-RESOURCE
ENVIRONMENT

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of par-
allel, distributed programming, and more particularly to
execution optimization of parallel, distributed programs.

MapReduce is a generic programming model for process-
ing parallelizable problems. MapReduce applications can
process large data sets in parallel by coordinating the
resources of a large number of physical and/or virtual com-
puters, known collectively as a cluster or grid. In the MapRe-
duce programming paradigm, a job is submitted for process-
ing, which is then broken down into pieces known as tasks.
These tasks are scheduled to run on the various nodes in the
MapReduce cluster, with task assignments being made such
that each node can work on its piece of the job in parallel with
the work being done by other nodes.

As the name implies, each task in a MapReduce job is
typically of one of two types: a map task or a reduce task. As
a simple example, a MapReduce job might be to process all
the words in a collection of books, counting the number of
times each word occurs. A set of map tasks might be created,
one for each book in the collection, with each task recording
the frequency of occurrences of every word found in the book
associated with that task. The output produced by these map
tasks is then used as input to a set of reduce tasks. In this case,
each word might have an associated reduce task, the job of
which is to sum the frequencies of that word produced by all
the map tasks. The distribution of work provided by MapRe-
duce enables map tasks and reduce tasks to run on small
subsets of larger sets of data, which both lowers processing
latency and provides a high degree of scalability. Because of
the potentially large size of MapReduce jobs and the ability to
take advantage of custom-scaled processing, it may be attrac-
tive to run MapReduce jobs in a cloud environment (dis-
cussed further below).

SUMMARY

According to an aspect of the present invention, there is a
method, computer program product and/or system that per-
forms the following steps (not necessarily in the following
order): (i) begins execution of a parallel, distributed job in a
job cluster defined by an initial allocation of cluster resources,
the job having an initial configuration of a plurality of job
parameters; (ii) receives status information about the cluster;
(iii) determines, based at least in part on the cluster status
information, a performance impact to the job; (iv) reconfig-
ures one or more job parameters of the plurality of job param-
eters, based, at least in part, on the determined job perfor-
mance impact; and (v) continues execution of the job using
the updated configuration. The job includes at least a first job
task, and among the plurality of job parameters are param-
eters for the first job task.

According to another aspect of the present invention, there
is a method, computer program product and/or system that
performs the following steps (not necessarily in the following
order): (1) begins execution of a MapReduce parallel, distrib-
uted job in a MapReduce job cluster defined by an initial
allocation of cluster resources, the MapReduce job having an
initial configuration of a plurality of job parameters; (ii)
receives status information about the executing job; (iii)
determines, based at least in part on the job status informa-
tion, a performance impact to the job; (iv) requests a changed

10

15

20

25

30

35

40

45

50

55

60

65

2

allocation of cluster resources, based, at least in part, on the
determined job performance impact; (v) responsive to receiv-
ing a changed allocation of cluster resources, reconfigures
one or more job parameters of the plurality of job parameters,
based, at least in part, on the changed allocation; and (vi)
continues execution of the job using the updated configura-
tion. The job includes at least a first job task, and among the
plurality of job parameters are parameters for the first job
task.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cloud computing node of a system accord-
ing to a first embodiment of the present invention;

FIG. 2 depicts a cloud computing environment according
to the first embodiment system;

FIG. 3 depicts abstraction model layers according to the
first embodiment system;

FIG. 4A is a first flowchart according to the first embodi-
ment system,

FIG. 4B is a second flowchart according to the first embodi-
ment system,

FIG. 5 is a block diagram view of a machine logic (for
example, software) portion of the first embodiment system;

FIG. 6 is a diagram of a portion of a second embodiment
system,

FIG. 7 is a diagram of a portion of a third embodiment
system,

FIG. 8 is a first flowchart according to the third embodi-
ment system; and

FIG. 9 is a second flowchart according to the third embodi-
ment system.

DETAILED DESCRIPTION

Some embodiments of the present invention dynamically
adjust the parameters of a parallel, distributed job in response
to changes to the status of the job cluster in a shared-resource
environment. Alternatively or in addition, some embodiments
of the present invention dynamically request a change to the
resources of the job cluster for a parallel, distributed job in
response to changes in job status. The cluster status informa-
tion may include information about cluster layers below the
layer of the host virtual machine(s), and/or the changes to the
cluster may include changes below that layer.

This Detailed Description section is divided into the fol-
lowing sub-sections: (i) The Hardware and Software Envi-
ronment; (ii) Example Embodiment; (iii) Further Comments
and/or Embodiments; and (iv) Definitions.

1. The Hardware And Software Environment

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-

US 9,405,582 B2

3

able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other

10

15

20

25

30

35

40

45

50

55

60

65

4

programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (for example, net-
works, network bandwidth, servers, processing, memory,
storage, applications, virtual machines, and services) that can
be rapidly provisioned and released with minimal manage-
ment effort or interaction with a provider of the service. This
cloud model may include at least five characteristics, at least
three service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (for
example, mobile phones, laptops, and personal digital assis-
tants (PDAs)).

US 9,405,582 B2

5

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (for example, country, state, or
datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(for example, storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (for example, web-based email). The consumer
does not manage or control the underlying cloud infrastruc-
ture including network, servers, operating systems, storage,
or even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (for example, host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (for example, mission, security require-
ments, policy, and compliance considerations). It may be
managed by the organizations or a third party and may exist
on-premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized

10

15

20

25

30

35

40

45

50

55

60

6

or proprietary technology that enables data and application
portability (for example, cloud bursting for load balancing
between clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10 is
only one example of a suitable cloud computing node and is
not intended to suggest any limitation as to the scope ofuse or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 10 there is a computer system/
server 12, which is operational with numerous other general-
purpose or special-purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system executable instructions, such
as program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Computer system/server 12 may be practiced in dis-
tributed cloud computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed cloud computing
environment, program modules may be located in both local
and remote computer system storage media including
memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types ofbus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
ten/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage

US 9,405,582 B2

7

media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (for example, a “floppy disk™), and an optical disk
drive for reading from or writing to a removable, non-volatile
optical disk such as a CD-ROM, DVD-ROM or other optical
media can be provided. In such instances, each can be con-
nected to bus 18 by one or more data media interfaces. As will
be further depicted and described below, memory 28 may
include at least one program product having a set (for
example, at least one) of program modules that are configured
to carry out the functions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (for example, network card, modem, and so on) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via input/output (I/O) interfaces 22. Still yet, computer
system/server 12 can communicate with one or more net-
works such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (for example,
the Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of com-
puter system/server 12 via bus 18. It should be understood
that although not shown, other hardware and/or software
components could be used in conjunction with computer
system/server 12. Examples include, but are not limited to:
microcode, device drivers, redundant processing units, exter-
nal disk drive arrays, RAID systems, tape drives, data archival
storage systems, and so on.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment 50 is depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination
thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work-addressable connection (for example, using a web
browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)

10

15

20

25

30

35

40

45

50

55

60

65

8

is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in F1G. 3 are intended to be
illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM
DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and MapReduce job processing.

1I. Example Embodiment

FIGS. 4A and 4B show flowcharts 400 and 450, respec-
tively, each depicting a method according to the present
invention. FIG. 5 shows program 40 (see also FIG. 1) for
performing at least some of the method steps of flowcharts
400 and 450. Each method and associated software will now
be discussed, over the course of the following paragraphs,
with extensive reference to FIGS. 4A and 4B (for the method
step blocks) and FIG. 5 (for the software blocks).

These methods presuppose that a MapReduce job has been
launched and is running in a shared-resource environment.
While a MapReduce job is used in these examples, the control
processes used are similarly applicable to other forms of
parallel, distributed processing. In any case, such a job may
have many parameters whose settings can impact job perfor-
mance. Some of these parameters can be tuned ahead of time
based on static job characteristics (“static tuning”). Others
can be tuned at run time based on dynamic job characteristics

US 9,405,582 B2

9

at the time the job is launched (“semi-static tuning”), or at the
time a job task is launched (“semi-dynamic tuning”). Still
others can be tuned in real time based on dynamic character-
istics as observed during task execution (“dynamic tuning”).

In each case, the characteristics on which parameter tuning
can be based may come from a number of different categories.
These categories may include, but are not necessarily limited
to: (i) characteristics of the data, such as data volume or
internal structure; (ii) characteristics of the analysis, such as
whether the objective is to sum a set of integers or to deter-
mine the topic of written prose; (iii) characteristics of the
execution environment independent of external influence
(“independent environmental characteristics”), such as num-
ber of nodes assigned to the cluster or storage capacity of a
particular node; (iv) characteristics of the execution environ-
ment that may be influenced by external factors (“interdepen-
dent environmental characteristics”), such as the amount of
bandwidth available for data transfer to/from a shared physi-
cal or virtual machine, or current potential in floating-point
operations per second of a virtual CPU whose physical hard-
ware is shared with other virtual CPUs, and/or (v) status and
performance metrics, such as average percentage of job
completion per unit time. Environmental characteristics may
in general be from any of the various layers of the resource
stack, including the virtual machine or operating system lay-
ers and the underlying physical or hypervisor layers.

Likewise, characteristics of a MapReduce job which may
be affected by parameter changes include, for example: (i)
task-level characteristics, such as input data size to a given
task, the location of data for a given task, or the amount of
memory and/or processing resources allocated to a given
task; (ii) job-level characteristics, such as the number of con-
current tasks, overall job progress, or the utilization ratio of
resources in use to resources available; and/or (iii) cluster-
level characteristics, such as the quantity and locations of
specific resources that make up the MapReduce job cluster.

The methods of FIGS. 4A and 4B will discussed with these
points in mind. Each method may be used independently of
the other, or they may both be used together. More generally,
they may incorporate being driven by, and/or driving changes
to, any combination of characteristics and/or types of charac-
teristics given above. Finally, they may be complementary to
other optimization techniques, such as static tuning and semi-
dynamic tuning.

FIG. 4A presents a method that dynamically adjusts the
parameters of the MapReduce job based on the status of the
MapReduce cluster. Processing begins at step S405, where, as
the MapReduce job runs, task profiler module (“mod”) 42a
builds profiles for the mapper and reducer tasks. These pro-
files include characteristics about the tasks such as whether
they are CPU and/or memory intensive.

Processing proceeds to step S410, where cluster status
monitor mod 425 monitors the status of the MapReduce job
cluster. This status includes information about resource utili-
zation at layers underneath the layer of the guest operating
systems on which the MapReduce job runs, such as CPU and
memory utilization information about the physical machines
which host cluster resources. In general, many types of infor-
mation about performance at various levels of the cluster
platform may be included. The cluster status is monitored as
the MapReduce job runs so that parameters may be adjusted
dynamically as need be in response to status changes.

Processing proceeds to step S415, where cluster status
impact analysis mod 42¢ determines the significance of any
change to cluster status. For example, performance of cluster
CPU resources may be trending steadily downward, while

30

40

45

10

task profile information indicates that CPU performance is
crucial to timely job completion.

Processing proceeds to step S420, where, if cluster status
impact mod determines that current cluster status or status
trends will impact job performance, task configuration mod
42d determines what parameters to adjust and how to recon-
figure them to optimize performance based on current or
trending cluster conditions. Depending on the circumstances,
this may include adjustments such as changes to input data
size for mapper and/or reducer tasks, resource allocations to
each task, and/or increasing or decreasing the number of
concurrent tasks. Task-level configuration parameters may or
may not be customized on a task-by-task basis. Continuing
with the above example, task configuration mod 424 may
decide to schedule fewer concurrent tasks (and may addition-
ally decide to increase the data size of each new task) to
reduce processor contention, thereby shifting critical proces-
sor resources to useful computation. Task configuration mod
42d then makes the appropriate adjustments to effect these
changes.

Processing proceeds to step S425, where task status moni-
tor mod 42e monitors task status to determine whether the
parameter changes were effective in meeting the performance
objectives occasioning the changes introduced in step S420,
or whether different or additional measures may be necessary.
The process then returns to step S405, repeating until the
MapReduce job is complete. In this way, the process of FIG.
4A performs dynamic tuning of a MapReduce job based on
interdependent characteristics of the MapReduce job envi-
ronment.

FIG. 4B presents a method that dynamically requests a
change to the MapReduce job cluster based on the status of
the MapReduce job. Processing begins at step S455, where, as
in the method of FIG. 4A, task profiler mod 42a builds pro-
files for the mapper and reducer tasks of the MapReduce job
as it runs.

Processing proceeds to step S460, where task status moni-
tor mod 42¢ monitors the status of the tasks associated with
the MapReduce job, including factors such as CPU utiliza-
tion, memory utilization, throughput, and/or task progress.
Task profiling is a kind of monitoring that focuses on under-
standing the resource consumption characteristics of the
execution of a certain task.

Processing proceeds to step S465, where task status impact
analysis mod 42f determines the impact of task status on
overall performance of the MapReduce job. For instance,
overall job progress may be determined to be only 30% com-
plete after 50% of allocated job time has been used.

Processing proceeds to step S470, where cluster resource
request mod 42g decides, based on the analysis of the previ-
ous step, whether a change in the cluster resource configura-
tion would be beneficial. If so, it decides what resource
changes to request and submits this request to the cluster
resource provisioning system. Continuing the previous
example, cluster resource request mod 42g may determine
that three additional nodes are now needed for the job to
complete within the allotted time. It makes this request and
receives a response indicating the new cluster configuration.
Alternatively, perhaps job progress is far ahead of expecta-
tions and/or some cluster resources are not being fully uti-
lized. In that case, cluster resource request mod 42g may
make a request to scale down or otherwise reconfigure the
cluster in order to minimize the quantity of resources reserved
while simultaneously maximizing the utilization of those
resources.

Processing proceeds to step S475, where task configura-
tion mod 42d determines what parameters to adjust and how

US 9,405,582 B2

11

to reconfigure them to optimize performance based on the
new cluster configuration. If no new cluster configuration was
requested, task configuration mod 424 still analyzes the data
from task status monitoring and impact analysis mods 42¢
and 42fto determine if task reconfiguration is nevertheless
still desirable. Depending on the circumstances, this recon-
figuration may include adjustments such as changes to input
data size for mapper and/or reducer tasks, resource alloca-
tions to each task, and/or increasing or decreasing the number
of concurrent tasks. Task-level configuration parameters may
or may not be customized on a task-by-task basis. Continuing
the above example, task configuration mod 424 decides that
three extra nodes will allow 6 additional tasks to run concur-
rently. Task configuration mod 424 then makes the appropri-
ate adjustments to realize these changes.

Processing proceeds to step S480, where task status moni-
tor mod 42e monitors task status to determine whether the
parameter changes were effective in meeting the performance
objectives occasioning the changes introduced in step S470
and/or S475, or whether different or additional measures may
be necessary. The process then returns to step S455, repeating
until the MapReduce job is complete. In this way, the process
of FIG. 4B performs dynamic tuning of cluster-level charac-
teristics of a MapReduce job based on job status.

1II. Further Comments and/or Embodiments

Some embodiments of the present invention recognize that
conventional MapReduce execution practice involves the fol-
lowing steps: (i) a fixed set of resources (such as a particular
number of nodes in a cluster or grid) is requested at the time
a MapReduce job is submitted; (ii) a dedicated set of
resources is then allocated at the time the MapReduce job is
scheduled to run; (iii) the MapReduce job runs to completion;
and (iv) the resources are released.

Further, some embodiments of the present invention rec-
ognize that to prepare for these executions, conventional,
static MapReduce job performance is tuned in the following
manner: (i) an initial parameter configuration is set; (ii) one or
more test runs are conducted; (iii) a performance advisor
consults execution results (such as job results, job counters,
and system monitoring logs) to identify bottlenecks and inef-
ficiencies offline; and (iv) the performance advisor sets a new
job configuration based on its analysis. This cycle may then
be repeated until a satisfactory level of performance is
achieved.

However, some embodiments of the present invention rec-
ognize that there are a number of shortcomings to the con-
ventional approaches. For example, the conventional
approach to performance tuning described above may require
many test runs, and for jobs that are long running or that will
only be run once after testing, those test runs may not be worth
the investment.

Moreover, some embodiments of the present invention rec-
ognize that tuning the performance of MapReduce jobs may
involve many parameters, and that for at least some of these
parameters, static tuning is insufficient. Instead, these
embodiments recognize that the parameters of MapReduce
jobs may include those from one or more of the following
categories: (1) job-specific parameters that can be determined
a priori and statically by analyzing the input data set; (ii)
job-specific parameters that vary dynamically and which
require dynamic monitoring and tuning for optimal perfor-
mance; and/or (iii) a third set of parameters that affect the
performance of MapReduce jobs when those jobs arerunin a
cloud environment using shared resources and services, and
which require dynamic monitoring and tuning together with
those jobs, taking into account the effects of the dynamically
changing characteristics of the shared resources in the cloud.

15

20

25

30

40

45

55

12

These embodiments further recognize that the cloud envi-
ronment presents potential issues—and opportunities—with
respect to both performance and scaling. For instance,
MapReduce job performance in shared resources varies over
time, but conventional tuning approaches completely ignore
performance effects due to resource sharing. Without real
time coordination between cloud resource management and
MapReduce job management, it is difficult or impossible to
achieve the desired level of job performance. In addition,
existing MapReduce implementations cannot scale in or out
in real time. For instance, once a MapReduce job is started,
extra compute nodes cannot be added to the cluster.

Some embodiments also recognize: (i) that cloud resource
monitoring and provisioning are typically “transparent” in
the sense that processes running in a cloud environment are
unaware of resource details at lower layers of the cloud com-
puting stack; (ii) that this transparency and lack of awareness
are not ideal for system-level performance tuning, and/or (iii)
that system-level performance tuning may be particularly
beneficial in the case of large-scale, coordinated, and/or dis-
tributed processing such as that performed by MapReduce
systems. For instance, in traditional computing a typical
resource sharing mechanism is provided at the operating sys-
tem level, where an operating system provides resource iso-
lation for concurrent processes. In cloud computing, on the
other hand, a hypervisor, which enables multiple virtual
machines to run on the same physical machine, provides a
resource isolation mechanism instead of or in addition to the
resource isolation mechanism provided by the operating sys-
tem(s). In the current cloud computing framework, hypervi-
sors also provide resource transparency to the processes that
runs on guest operating systems. What is therefore needed are
hypervisors that provide resource utilization awareness to
systems, such as MapReduce systems, that run on top of guest
operating systems, allowing these systems to perform more
effective performance tuning.

In appreciation of the above, some embodiments of the
present invention conduct dynamic performance tuning of
cloud-based MapReduce jobs by taking into account the per-
formance of shared cloud resources. This performance data
may include, for example: (i) cloud resource usage data; (ii)
resource sharing and allocation decisions; and/or (iii) indi-
vidual job status on mapper and reducer tasks.

Some embodiments may include a MapReduce configura-
tion manager that periodically computes configuration
parameters for mapper and reducer configurators by taking
the collected performance data into account. Details about
some of the ways configuration parameters for MapReduce
jobs can be computed from available performance data can be
found elsewhere (see, for example, Min Li et al., MRON-
LINE: MapReduce Online Performance Tuning, ACM Sym-
posium on High-Performance Parallel and Distributed Com-
puting 2014 (HPDC'14)). The newly updated configuration
parameters are then sent to the mapper and reducer configu-
rators, which implement the configuration manager deci-
sions. In some embodiments, administrators can set configu-
ration manager policies to optimize performance across all
jobs taking into account such factors as available resources,
sharing decisions, and/or usage patterns. In some embodi-
ments, policies may also be set to optimize performance on a
job-class basis when multi-class MapReduce jobs are sched-
uled. For example, MapReduce jobs belonging to Gold class
may be configured with higher priority over Silver-class jobs,
which in turn have higher priority over Bronze-class jobs.
Some embodiments may seek to improve overall cloud per-
formance by taking into account MapReduce job class.

US 9,405,582 B2

13

Some embodiments of the present invention conduct
dynamic performance tuning via one or both of the following
control loops: (i) a control loop that reconfigures MapReduce
jobs in real time if changes to the cluster impact job perfor-
mance (“Control Loop 17); and/or (ii) a control loop that
reissues resource requests if predicted performance results
cannot meet service level agreement commitments (“Control
Loop 27).

Shown in FIG. 6 is diagram 600 illustrating an embodiment
system containing these two control loops. Diagram 600
includes: cloud resource manager 602; MapReduce service
manager 604; MapReduce jobs 610 and 612; and monitoring
agents 606 and 608. Control Loop 1 and Control Loop 2 are
represented by dashed boxes 621 and 622, respectively. In
Control Loop 1, monitoring agent 606 monitors MapReduce
job 610 and cluster status and feeds back job performance
information to MapReduce service manager 604. MapRe-
duce service manager 604 analyzes this information and
reconfigures MapReduce job 610 accordingly by dynami-
cally tuning any of the various parameters of MapReduce job
610 that can be so tuned. The cycle then repeats. In Control
Loop 2, monitoring agent 608 monitors MapReduce job 612
and feeds back job performance information to MapReduce
service manager 604 in a manner similar to that in Control
Loop 1. However, after MapReduce service manager 604
analyzes this information in Control Loop 2, it seeks to recon-
figure the resource pool of MapReduce job 612 by issuing
appropriate requests to cloud resource manager 602 (and then
reconfigure MapReduce job 612 to best utilize the new
resource pool). The cycle then repeats.

Shown in FIG. 7 is amore detailed view of another embodi-
ment system, system 700, which also implements both con-
trol loops. System 700 includes the following components:
MapReduce job scheduler 702; cloud operational support
system (cloud OSS) 704; cloud provisioning engine 706;
MapReduce service manager 708; MapReduce job configu-
ration manager 710; physical machines 712 and 714; virtual
machines 716, 718, and 720; virtual machine monitor agents
722 and 724; MapReduce task monitors 726, 728, and 730;
and MapReduce task configurators 732, 734, and 736. System
700 also includes the following sets of data or action items:
new MapReduce job 750; cluster status report 752; cluster
definition 754; resource request 756; task configurations 768,
770, and 772; task status reports 762, 764, and 766; and
virtual machine (VM) status reports 758 and 760.

Control Loop 1 will now be described with reference to
FIG. 7, as well as to flowchart 800 in FIG. 8. As a precondi-
tion, MapReduce job scheduler 702 schedules MapReduce
job 750 for execution in the cloud environment of system 700.
MapReduce job configuration manager 710 sets an initial
configuration for each MapReduce task (not shown) in job
750 via task configurations 768, 770, and 772. The tasks are
dispatched to virtual machines 716, 718, and 720, and their
respective configurations are setby MapReduce task configu-
rators 732, 734, and 736. As MapReduce job 750 runs,
MapReduce job configuration manager 710 dynamically
builds a profile for the mapper/reducer tasks of MapReduce
job 750 (not shown in flowchart 800). The profile is built via
task status reports 762, 764, and 766, produced by MapRe-
duce task monitors 726, 728, and 730, respectively, and
includes information relevant for parameter tuning, such as
whether the tasks are CPU intensive and/or memory inten-
sive.

Meanwhile, in step S805, virtual machine monitors 722
and 724 report the status of virtual machines 716, 718, and
720 via VM status reports 758 and 760 to cloud provisioning
engine 706 of cloud OSS 704. In step S810, cloud OSS 704

10

15

20

25

30

35

40

45

50

55

60

14

uses this information to determine the status of the MapRe-
duce job cluster, which it reports to MapReduce job configu-
ration manager 710 via cluster status report 752. In step S815,
MapReduce job configuration manager 710 analyzes this
information to determine whether the new cluster status
impacts the performance of MapReduce job 750.

If the performance of MapReduce job 750 is impacted,
MapReduce job configuration manager 710 identifies param-
eters to adjust in step S820 in order to optimize performance
in light of the new cluster status. These parameters may
include, for example: (i) the size of the inputs to mapper/
reducer tasks; (ii) the resource allocations for mapper/reducer
tasks; and/or (iii) the number of mapper/reducer tasks to run
concurrently. New task configurations 768, 770, and 772 are
then created with the appropriate parameters adjusted to new
values for consumption by MapReduce task configurators
732, 734, and 736 through programmable interfaces (new
tasks may be launched, and configured appropriately, as
well). MapReduce task monitors 726, 728, and 730 report
updated task statuses, which reflect the configuration
changes, to MapReduce job configuration manager 710 in
step S825. Finally, in step S830, MapReduce job configura-
tion manager 710 validates the effectiveness of the task con-
figuration changes and makes additional adjustments if nec-
essary. The process then repeats from step S805 to complete
the control loop. In this way, Control Loop 1 dynamically
re-configures MapReduce job 750 based on cluster status
throughout its lifetime.

Control Loop 2 will now be described, also with reference
to FIG. 7, as well as to flowchart 900 in FIG. 9. The precon-
ditions for Control Loop 2 are similar to those for Control
Loop 1, including dynamic creation of task profiles that track
characteristics such as whether tasks are CPU heavy and/or
memory heavy. As such, these preconditions will not be
repeated here.

Control Loop 2 begins with step S905, where MapReduce
task monitors 726, 728, and 730 report task statuses for the
tasks of MapReduce job 750 to MapReduce job configuration
manager 710. MapReduce job configuration manager 710
uses these status reports to monitor various characteristics of
running mapper/reducer tasks, such as CPU utilization,
memory utilization, progress, and/or throughput. Based on an
analysis of new task status data, MapReduce job configura-
tion manager 710 determines whether or not job performance
is impacted in step S910. If so, MapReduce job configuration
manager 710 determines whether or not more cluster
resources are needed in step S913.

If performance targets can be met by job reconfiguration
only, processing skips to step S925, described below. On the
other hand, if more cluster resources are required to meet
performance targets or otherwise overcome job delays, pro-
cessing proceeds to step S915, where MapReduce job con-
figuration manager 710 sends a resource request to cloud
provisioning engine 706 of cloud OSS 704 to request new
cluster resources. In step S920, cloud provisioning engine
706 of cloud OSS 704 fulfills the resource request with new
cluster definition 754. Among other items, the new cluster
may include additional virtual machines running on the same
or additional physical machines.

In step S925, if a new cluster definition was received,
MapReduce job configuration manager 710 identifies the
parameters to adjust based on the new assigned cluster
resources, such as: (i) the size of inputs to mapper/reducer
tasks; (ii) the resource allocations for mapper/reducer tasks;
and/or (iii) the number of mapper/reducer tasks running con-
currently. In any case, once the parameters to adjust are deter-
mined, MapReduce job configuration manager 710 creates

US 9,405,582 B2

15
new task configurations 768, 770, and 772 for MapReduce
task configurators 732, 734, and 736, respectively, adjusting
the parameters to new values through programmable inter-
faces. (If new tasks were added, new configurators, configu-
rations, and monitors would be included for them as well.)

As the tasks of MapReduce job 750 continue to run with
their new configurations, MapReduce task monitors 726, 728,
and 730 report updated task statuses for their respective tasks
to MapReduce job configuration manager 710 in step S930.
MapReduce job configuration manager 710 then validates the
effectiveness of the adjusted task configurations in step S935.
The process then repeats from step S905 to complete the
control loop. In this way, Control Loop 2 dynamically re-
issues cluster resource requests and re-configures MapRe-
duce job 750 based on job status throughout its lifetime.

Control Loop 1 and Control Loop 2 are similar in that they
both permit dynamic reconfiguration of MapReduce jobs
based on job status monitoring. In the case of Control Loop 1,
the focus is on reconfiguring a MapReduce job based on
dynamic cluster status analysis within current cluster con-
straints, while with Control Loop 2, the emphasis is on re-
defining the cluster itself based on over- or under-provision-
ing of platform resources as determined by dynamic job
performance data. Each control loop may be used indepen-
dently of the other, or they may both be used for a given
MapReduce job.

IV. Definitions

Present invention: should not be taken as an absolute indi-
cation that the subject matter described by the term “present
invention” is covered by either the claims as they are filed, or
by the claims that may eventually issue after patent prosecu-
tion; while the term “present invention™ is used to help the
reader to get a general feel for which disclosures herein that
are believed as maybe being new, this understanding, as indi-
cated by use of the term “present invention,” is tentative and
provisional and subject to change over the course of patent
prosecution as relevant information is developed and as the
claims are potentially amended.

Embodiment: see definition of “present invention”
above—similar cautions apply to the term “embodiment.”

and/or: inclusive or; for example, A, B “and/or” C means
that at least one of A or B or C is true and applicable.

Receive/provide/send/input/output: unless otherwise
explicitly specified, these words should not be taken to imply:
(1) any particular degree of directness with respect to the
relationship between their objects and subjects; and/or (ii)
absence of intermediate components, actions and/or things
interposed between their objects and subjects.

Module/Sub-Module: any set of hardware, firmware and/
or software that operatively works to do some kind of func-
tion, without regard to whether the module is: (i) in a single
local proximity; (ii) distributed over a wide area; (iii) in a
single proximity within a larger piece of software code; (iv)
located within a single piece of software code; (v) located in
a single storage device, memory or medium; (vi) mechani-
cally connected; (vii) electrically connected; and/or (viii)
connected in data communication.

Computer: any device with significant data processing and/
or machine readable instruction reading capabilities includ-
ing, but not limited to: desktop computers, mainframe com-
puters, laptop computers, field-programmable gate array
(FPGA) based devices, smart phones, personal digital assis-
tants (PDAs), body-mounted or inserted computers, embed-
ded device style computers, application-specific integrated
circuit (ASIC) based devices.

Cluster: a collection of computing devices coordinated for
the purpose of performing a specific computation, or job;

5

10

15

20

25

30

40

45

50

55

60

65

16

encompasses both collections of relatively homogeneous
devices as well as collections, often referred to as “grids,” in
which the devices are relatively more heterogeneous.
What is claimed is:
1. A method comprising:
beginning execution of a MapReduce job by a computing
resources cluster constituted by an initial plurality of
computing resources, the execution of the MapReduce
job by the computing resources cluster is characterized,
at the time of the beginning of execution, by an initial
configuration of a plurality of job parameters; and
during execution of the MapReduce job, performing at
least one time, a first control loop that includes at least
the following operations:
build a current usage profile including information about
usage of at least some of the computing resources of
the computing resources cluster,
reconfiguring one, or more, job parameters of the plu-
rality of job parameters, based, at least in part, on the
usage profile so that the execution of the MapReduce
job by the computing resources cluster is character-
ized by an updated configuration of the plurality of
job parameters, and
continuing execution of the Map Reduce job by the
computing resources cluster using the updated con-
figuration.
2. The method of claim 1 wherein:
the computing resources cluster includes a plurality of
memory resources and a plurality of processing
resources;
the usage profile includes information about an intensity of
use of the memory resources of the plurality of memory
resources; and
the usage profile further includes information about an
intensity of use of the processing resources of the plu-
rality of processing resources.
3. The method of claim 1 wherein:
the plurality of parameters include at least the following
parameters: an input size used by a plurality of mapper/
reducer components, a resource allocation for the plu-
rality of mapper/reducer components, and a number of
concurrent mapper/reducer components; and
the reconfiguration of one, or more, job parameters
includes reconfiguration of at least one of the following
parameters: the input size used by the plurality of map-
per/reducer components, the resource allocation for the
plurality of mapper/reducer components, and the num-
ber of concurrent mapper/reducer components.
4. The method of claim 1 wherein the first control loop
further includes the following operation:
validating an effectiveness level of the reconfiguration of
the one, or more, job parameters with respect to continu-
ing execution of the MapReduce job.
5. The method of claim 1 further comprising:
during execution of the MapReduce job, performing at
least one time, a second control loop that includes at
least the following operations:
determining, based on the current usage profile and char-
acteristics of the first plurality of computing
resources, that execution of the MapReduce job by the
cluster of computing resources would benefit from
addition of additional computing resource(s) to the
computing resources cluster, and
adding a set of computing resource(s) to the computing
resource(s) cluster so that the computing resources
cluster is constituted by an updated plurality of com-
puting resources.

US 9,405,582 B2

17

6. The method of claim 1 further comprising:
during execution of the MapReduce job, performing at
least one time, a second control loop that includes at
least the following operations:
determining, based on the current usage profile and char- 5
acteristics of the first plurality of computing
resources, that execution of the MapReduce job by the
cluster of computing resources would not be impaired
by removing of computing resource(s) from the com-
puting resources cluster, and
removing a set of computing resource(s) from the com-
puting resource(s) cluster so that the computing
resources cluster is constituted by an updated plural-
ity of computing resources.
7. A computer program product comprising a computer

10

readable non-transitory storage medium having stored
thereon:

program instructions programmed to begin execution of a
MapReduce job by a computing resources cluster con-
stituted by an initial plurality of computing resources,
the execution of the MapReduce job by the computing
resources cluster is characterized, at the time of the
beginning of execution, by an initial configuration of a
plurality of job parameters; and
program instructions programmed to during execution of
the MapReduce job, perform at least one time, a first
control loop that includes at least the following opera-
tions:
build a current usage profile including information about
usage of at least some of the computing resources of
the computing resources cluster,

reconfiguring one, or more, job parameters of the plu-
rality of job parameters, based, at least in part, on the
usage profile so that the execution of the MapReduce
job by the computing resources cluster is character-
ized by an updated configuration of the plurality of
job parameters, and

continuing execution of the Map Reduce job by the
computing resources cluster using the updated con-
figuration.

8. The computer program product of claim 7 wherein:

the computing resources cluster includes a plurality of
memory resources and a plurality of processing
resources;

the usage profile includes information about an intensity of 45
use of the memory resources of the plurality of memory
resources; and

the usage profile further includes information about an
intensity of use of the processing resources of the plu-
rality of processing resources.

9. The computer program product of claim 7 wherein:

the plurality of parameters include at least the following
parameters: an input size used by a plurality of mapper/
reducer components, a resource allocation for the plu-
rality of mapper/reducer components, and a number of 55
concurrent mapper/reducer components; and

the reconfiguration of one, or more, job parameters
includes reconfiguration of at least one of the following
parameters: the input size used by the plurality of map-
per/reducer components, the resource allocation for the
plurality of mapper/reducer components, and the num-
ber of concurrent mapper/reducer components.

10. The computer program product of claim 7 wherein the

first control loop further includes the following operation:

validating an effectiveness level of the reconfiguration of 65
the one, or more, job parameters with respect to continu-
ing execution of the MapReduce job.

25

30

40

50

60

18

11. The computer program product of claim 7 wherein the
medium has further stored thereon:
program instructions programmed to, during execution of
the MapReduce job, perform at least one time, a second
control loop that includes at least the following opera-
tions:
determine, based on the current usage profile and char-
acteristics of the first plurality of computing
resources, that execution of the MapReduce job by the
cluster of computing resources would benefit from
addition of additional computing resource(s) to the
computing resources cluster, and
add a set of computing resource(s) to the computing
resource(s) cluster so that the computing resources
cluster is constituted by an updated plurality of com-
puting resources.
12. The computer program product of claim 7 wherein the
medium has further stored thereon:
program instructions programmed to, during execution of
the MapReduce job, perform at least one time, a second
control loop that includes at least the following opera-
tions:
determine, based on the current usage profile and char-
acteristics of the first plurality of computing
resources, that execution of the MapReduce job by the
cluster of computing resources would not be impaired
by removing of computing resource(s) from the com-
puting resources cluster, and
remove a set of computing resource(s) from the comput-
ing resource(s) cluster so that the computing
resources cluster is constituted by an updated plural-
ity of computing resources.
13. A computer system comprising:
a processor(s) set; and
a computer readable storage medium;
wherein:
the processor set is structured, located, connected and/or
programmed to run program instructions stored on the
computer readable storage medium; and
the program instructions include:
program instructions programmed to begin execution of
a MapReduce job by a computing resources cluster
constituted by an initial plurality of computing
resources, the execution of the MapReduce job by the
computing resources cluster is characterized, at the
time of the beginning of execution, by an initial con-
figuration of a plurality of job parameters, and
program instructions programmed to during execution
of the MapReduce job, perform at least one time, a
first control loop that includes at least the following
operations:
build a current usage profile including information
about usage of at least some of the computing
resources of the computing resources cluster,
reconfiguring one, or more, job parameters of the
plurality of job parameters, based, at least in part,
on the usage profile so that the execution of the
MapReduce job by the computing resources cluster
is characterized by an updated configuration of the
plurality of job parameters, and
continuing execution of the Map Reduce job by the
computing resources cluster using the updated con-
figuration.
14. The computer system of claim 13 wherein:
the computing resources cluster includes a plurality of
memory resources and a plurality of processing
resources;

US 9,405,582 B2

19

the usage profile includes information about an intensity of
use of the memory resources of the plurality of memory
resources; and

the usage profile further includes information about an
intensity of use of the processing resources of the plu-
rality of processing resources.

15. The computer system of claim 13 wherein:

the plurality of parameters include at least the following
parameters: an input size used by a plurality of mapper/
reducer components, a resource allocation for the plu-
rality of mapper/reducer components, and a number of
concurrent mapper/reducer components; and

the reconfiguration of one, or more, job parameters
includes reconfiguration of at least one of the following
parameters: the input size used by the plurality of map-
per/reducer components, the resource allocation for the
plurality of mapper/reducer components, and the num-
ber of concurrent mapper/reducer components.

16. The computer system of claim 13 wherein the first

control loop further includes the following operation:

validating an effectiveness level of the reconfiguration of
the one, or more, job parameters with respect to continu-
ing execution of the MapReduce job.

17. The computer system of claim 13 wherein the medium

has further stored thereon:

program instructions programmed to, during execution of
the MapReduce job, perform at least one time, a second
control loop that includes at least the following opera-
tions:

10

15

20

25

20

determine, based on the current usage profile and char-
acteristics of the first plurality of computing
resources, that execution of the MapReduce job by the
cluster of computing resources would benefit from
addition of additional computing resource(s) to the
computing resources cluster, and

add a set of computing resource(s) to the computing
resource(s) cluster so that the computing resources
cluster is constituted by an updated plurality of com-
puting resources.

18. The computer system of claim 13 wherein the medium
has further stored thereon:
program instructions programmed to, during execution of

the MapReduce job, perform at least one time, a second

control loop that includes at least the following opera-

tions:

determine, based on the current usage profile and char-
acteristics of the first plurality of computing
resources, that execution of the MapReduce job by the
cluster of computing resources would not be impaired
by removing of computing resource(s) from the com-
puting resources cluster, and

remove a set of computing resource(s) from the comput-
ing resource(s) cluster so that the computing
resources cluster is constituted by an updated plural-
ity of computing resources.

#* #* #* #* #*

